
RGB LED

Part 2

Overview
RGB LEDs are a fun and easy way to add some color to your projects. Since they are
like 3 regular LEDs in one, using and connecting them is not much different.

They come mostly in 2 versions: Common Anode or Common Cathode.
Common Anode: uses 5V on the common pin.
Common Cathode: connects to ground.

As with any LED, we need to connect some resistors inline (3 total) so we can limit the current
being drawn.

In our sketch, we will start with the LED in the Red color state, then fade to Green, then fade to Blue and
finally back to the Red color. By doing this we will cycle through most of the color that can be achieved.

Component Required:

At first glance, RGB (Red, Green and Blue) LEDs look just like regular LEDs. However, inside the usual LED
package, there are actually three LEDs, one red, one green and one blue. By controlling the brightness of
each of the individual LEDs you can mix pretty much any color you want.

We mix colors the same way you would mix paint on a palette - by adjusting the brightness of each of the
three LEDs. The hard way to do this would be to use different value resistors (or variable resistors) as we
did with in Lesson 2, but that's a lot of work! Fortunately for us, UNO R3 board has an analogWrite
function that you can use with pins marked with a ~ to output a variable amount of power to the
appropriate LEDs.

The RGB LED has four leads. There is one lead going to the positive
connection of each of the single LEDs within the package and a single
lead that is connected to all three negative sides of the LEDs.

The common negative connection of the LED package is the second pin
from the flat side. It is also the longest of the four leads and will be
connected to the ground.

Each LED inside the package requires its own 220Ω resistor to prevent
too much current flowing through it. The three positive leads of the
LEDs (one red, one green and one blue) are connected to UNO output
pins using these resistors.

RGB:

Component Introduction

(1) x Elegoo Uno R3

(1) x 830 Tie Points Breadboard

(4) x M-M wires (Male to Male jumper wires)

(1) x RGB LED

(3) x 220 ohm resistors

The reason that you can mix any color you like by varying the quantities of red, green and blue light
is that your eye has three types of light receptor in it (red, green and blue). Your eye and brain process
the amounts of red, green and blue and convert it into a color of the spectrum.

In a way, by using the three LEDs, we are playing a trick on the eye. This same idea is used in TVs, where
the LCD has red, green and blue color dots next to each other making up each pixel.

If we set the brightness of all three LEDs to be the same, then the overall
color of the light will be white. If we turn off the blue LED, so that just the
red and green LEDs are the same brightness, then the light will appear
yellow. We can control the brightness of each of the red, green and blue
parts of the LED separately, making it possible to mix any color we like.

COLOR:

Roughly every 1/500 of a second, the
PWM output will produce a pulse.
The length of this pulse is controlled
by the 'analogWrite' function.
So 'analogWrite(0)' will not produce
any pulse at all and 'analogWrite(255)
' will produce a pulse that lasts all the
way until the next pulse is due, so that
the output is actually on all the time.

If we specify a value in the analogWrite
that is somewhere in between 0 and 255, then we will produce a pulse. If the output pulse
is only high for 5% of the time, then whatever we are driving will only receive 5% of full power.

If, however, the output is at 5V for 90% of the time, then the load will get 90% of the power delivered
to it. We cannot see the LEDs turning on and off at that speed, so to us, it just looks like the brightness
is changing.

Pulse Width Modulation (PWM) is a technique for controlling power. We also use it here to control
the brightness of each of the LEDs.
The diagram below shows the signal from one of the PWM pins on
the UNO.

Black is not so much a color as an absence of light. Therefore,
the closest we can come to black with our LED is to turn off all three colors.

Theory (PWM)

Connection Schematic

Wiring diagram

Code

The sketch starts by specifying which pins are going to be used for each of the colors:

After wiring, please open the Sketch in folder path:
\Elegoo The Most Complete Starter Kit for UNO\English\Part 2 Module Learning\2.2 RGB LED,
and click UPLOAD to upload the program.

See Lesson 5 in part 1 for details about program uploading if there are any errors.

Parameters

Notes and Warnings

constantName: the name of the macro to define.
value: the value to assign to the macro.

There is no semicolon after the #define statement. If you include one, the compiler will throw
cryptic errors further down the page.

pinMode(pin, mode) Configures the specified pin to behave either as
an input or an output.

As of Arduino 1.0.1, it is possible to enable the internal pullup resistors
with the mode INPUT_PULLUP.
Additionally, the INPUT mode explicitly disables the internal pullups.

#define ledPin 3; // this is an error

#define ledPin = 3 // this is also an error

The next step is to write the 'setup' function. As we have learnt in earlier lessons, the setup function
runs just once after the Arduino has reset. In this case, all it has to do is define the three pins we are
using as being outputs.

Similarly, including an equal sign after the #define statement will also generate a cryptic compiler
error further down the page.

void setup()
{
pinMode(RED,OUTPUT);
pinMode(GREEN,OUTPUT);
pinMode(BLUE, OUTPUT);
digitalWrite(RED,HIGH);
digitalWrite(GREEN,LOW);
digitalWrite(BLUE, LOW);

This can have some unwanted side effects though, if for example, a constant name that had been
#defined is included in some other constant or variable name. In that case the text would be
replaced by the #defined number (or text).

is a useful C++ component that allows the programmer to give a name to a constant value
before the program is compiled. Defined constants in arduino don’t take up any program
memory space on the chip. The compiler will replace references to these constants with the
defined value at compile time.

#define constantName value:

// Define Pins
#define BLUE 3 // The compiler will replace any mention of ledPin with the value 3 at compile time.
#define GREEN 5
#define RED 6

Int： is the Data Types. Integers are your primary data-type
for number storage.

int’s store negative numbers with a technique called (2’s complement math). The highest bit,
sometimes referred to as the "sign" bit, flags the number as a negative number. The rest of the
bits are inverted and 1 is added.

On the Arduino Uno (and other ATmega based boards) an int stores a
16-bit (2-byte) value. This yields a range of -32,768 to 32,767
(minimum value of -2^15 and a maximum value of (2^15) - 1). On the Arduino Due and SAMD based
boards (like MKR1000 and Zero), an int stores a 32-bit (4-byte) value.
This yields a range of -2,147,483,648 to 2,147,483,647 (minimum value of -2^31 and a maximum value
of (2^31) - 1).

// define variables
int redValue;
int greenValue;
int blueValue;

The define variables

Syntax
int var = val;

Before we take a look at the 'loop' function, let’s look at the last function in the sketch.

pin: the Arduino pin number to set the mode of.
mode: INPUT, OUTPUT, or INPUT_PULLUP. See the Digital Pins page for a more complete
description of the functionality.

Parameters

redValue = 255; // choose a value between 1 and 255 to change the color.
greenValue = 0;
blueValue = 0;

This function takes three arguments, one for the brightness of the red, green and blue LEDs. In each
case the number will be in the range 0 to 255, where 0 means off and 255 means maximum brightness.
The function then calls 'analogWrite' to set the brightness of each LED.

Try adding a few colors of your own to the sketch and watch the effect on your LED.

for (int i = 0; i < 255; i += 1) // fades out red bring green full when i=255
{
redValue -= 1;
greenValue += 1;
// The following was reversed, counting in the wrong directions
// analogWrite(RED, 255 - redValue);
// analogWrite(GREEN, 255 - greenValue);
analogWrite(RED, redValue);
analogWrite(GREEN, greenValue);
delay(delayTime);
}

var: variable name.
val: the value you assign to that variable.

Parameters

=
[Arithmetic Operators]
Description

The single equal sign = in the C++ programming language is called the assignment operator. It has
a different meaning than in algebra class where it indicated an equation or equality. The assignment
operator tells the microcontroller to evaluate whatever value or expression is on the right side of the
equal sign, and store it in the variable to the left of the equal sign.

Notes and Warnings
The variable on the left side of the assignment operator (= sign) needs to be able to hold the value
stored in it. If it is not large enough to hold a value, the value stored in the variable will be incorrect.

Don’t confuse the assignment operator [=] (single equal sign) with the comparison operator [==]
(double equal signs), which evaluates whether two expressions are equal.

Parameters

The for statement is used to repeat a block of statements enclosed in curly braces.
An increment counter is usually used to increment and terminate the loop.
The for statement is useful for any repetitive operation, and is often used in combination with arrays
to operate on collections of data/pins.

initialization: happens first and exactly once.
condition: each time through the loop, condition is tested; if it’s true, the statement blocks,
and the increment is executed, then the condition is tested again. When the condition becomes
false, the loop ends.
increment: executed each time through the loop when condition is true.

for
[Control Structure]
Description

This is a convenient shorthand to perform
addition/subtraction on a variable with another
constant or variable.

Parameters
x: variable. Allowed data types: int, float, double, byte,
short, long.
y: variable or constant. Allowed data types: int, float, double, byte, short, long.

+= / -=
[Compound Operators]
Description

Syntax
for (initialization; condition; increment) {
 // statement(s);
}

Syntax
x += y; // equivalent to the expression x = x + y;
x -= y; // equivalent to the expression x = x - y;

