
 The Serial
 Monitor

Part 3

Overview
In this lesson, you will build on Lesson 22 of part 2, adding the facility to control the LEDs from your
computer using the Arduino Serial Monitor. The serial monitor is the 'tether' between the computer
and your UNO. It lets you send and receive text messages, handy for debugging and also controlling
the UNO from a keyboard! For example, you will be able to send commands from your computer to
turn on LEDs. In this lesson, you will use exactly the same parts and a similar breadboard layout as
Lesson 22 Part 2. So, if you have not already done so, follow Lesson 22 of part 2 now.

After you have uploaded this sketch onto your UNO, click on the
right-most button on the toolbar in the Arduino IDE. The button
 is circled below.

The following window will open.
Click the Serial Monitor button to turn on the serial monitor.
The basics about the serial monitor are introduced in details in
Lesson 4 of part 2.

This window is called the Serial Monitor and it is part of the
Arduino IDE software. Its job is to allow you to both send messages
from your computer to an UNO board (over USB) and also to
receive messages from the UNO.

The message “Enter LED Number 0 to 7or 'x' to clear” has been
sent by the Arduino. It is telling us what commands we can send to
 the Arduino: either send the 'x' (to turn all the LEDs off) or the
number of the LED you want to turn on (where 0 is the bottom LED,
1 is the next one up, all the way to 7 for the top LED).

Try typing the following commands into the top area of the Serial
Monitor that is level with the 'Send' button. Press 'Send', after
typing each of these characters: x 0 3 5

Typing x will have no effect if the LEDs are already all off, but as
you enter each number, the corresponding LED should light and
you will get a confirmation message from the UNO board. The
Serial Monitor will appear as shown below.

Type x again and press ‘Send’ to turn off all LEDs.

Steps

After wiring, please open program in the code folder-The_Serial_Monitor and click UPLOAD to upload
the program. See Lesson 5 of part 1 for details about program uploading if there are any errors.

As you might expect, the sketch is based on the sketch used in Lesson 22 of part 2. So, we will just
cover the new bits here. You will find it useful to refer to the full sketch in your Arduino IDE.

In the 'setup' function, there are three new lines at the end:

Firstly, we have the command 'Serial.begin
(9600)'. This starts serial communication,
so that the UNO can send out commands
through the USB connection. The value 9600
is called the 'baud rate' of the connection.
This is how fast the data is to be sent. You can
change this to a higher value, but you will
also have to change the Arduino Serial
monitor to the same value. We will discuss
this later; for now, leave it at 9600.

The line beginning with 'while' ensures that there is something at the other end of the USB connection
for the Arduino to talk to before it starts sending messages. Otherwise, the message might be sent, but
not displayed. This line is actually only necessary if you are using an Arduino Leonardo because the
Arduino UNO automatically resets the Arduino board when you open the Serial Monitor, whereas this
does not happen with the Leonardo.

The last of the new lines in 'setup' sends out
the message that we see at the top of the
Serial Monitor.

The 'loop' function is where all the action
happens:

Everything that happens inside the loop is
contained within an 'if' statement. So unless
the call to the built-in Arduino
function 'Serial.available()' is 'true' then
nothing else will happen.

Serial.available() will return 'true' if data has
been send to the UNO and is there ready to be
processed. Incoming messages are held in
what is called a buffer and Serial.available()
returns true if that buffer is Not empty.

Code

void setup()
{
pinMode(latchPin, OUTPUT);
pinMode(dataPin, OUTPUT);
pinMode(clockPin, OUTPUT);
updateShiftRegister();
Serial.begin(9600);

while (! Serial); // Wait until Serial is ready - Leonardo
Serial.println("Enter LED Number 0 to 7 or 'x' to clear");
}

void loop()
{
if (Serial.available())
{
char ch = Serial.read();
if (ch >= '0' && ch <= '7')
{
int led = ch - '0'; bitSet(leds, led);
updateShiftRegister();
Serial.print("Turned on LED ");
Serial.println(led);
}
if (ch == 'x')
{
leds = 0; updateShiftRegister();

Serial.println("Cleared");
}
}
}

char ch = Serial.read();

int led = ch ‒ '0';

bitSet(leds, led);
updateShiftRegister();

Serial.print("Turned on LED ");
Serial.println(led);

if (ch == 'x')
{
leds = 0;
updateShiftRegister();
Serial.println("Cleared");
}

If a message has been received, then it is on to the next line of code:

This reads the next character from the buffer, and removes it from the
buffer. It also assigns it to the variable 'ch'. The variable 'ch' is of type 'char' which stands for '
character' and as the name suggests, holds a single character.

If you have followed the instructions in the prompt at the top of the Serial Monitor, then this character
will either be a single digit number between 0 and 7 or the letter 'x'.

The 'if' statement on the next line checks to see if it is a single digit by seeing if 'ch' is greater than or
equal to the character '0' and less than or equal to the character '7'. It looks a little strange comparing
characters in this way, but is perfectly acceptable.

Each character is represented by a unique number, called its ASCII value. This means that when we
 compare characters using <= and >= it is actually the ASCII values that were being compared.

If the test passes, then we come to the next line:

Now we are performing arithmetic on characters! We are subtracting the
digit '0' from whatever digit was entered. So, if you typed '0' then '0' ‒ '0' will equal 0. If you typed '7'
then '7' ‒ '0' will equal the number 7 because it is actually the ASCII values that are being used in the
 subtraction.

Since that we know the number of the LED that we want to
turn on, we just need to set that bit in the variable 'leds' and
update the shift register.

The next two lines write back a confirmation message to the Serial Monitor.

The first line uses Serial.print() rather than Serial.println(). The
different between the two is that Serial.print does not start a
new line after printing whatever is in its parameter. We use this
in the first line, because we are printing the message in two parts.
Firstly, the general bit: ‘Turned on LED’ and then the number of the LED.

The number of the LED is held in an 'int' variable rather than being a text string. Serial.print can take
either a text string enclosed in double-quotes, or an 'int' or for that matter pretty much any type
of variable.

After the 'if' statement that handles the case, when a single
digit has been handled, there is a second 'if' statement that
checks to see if 'ch' is the letter 'x'.

If it is, then it clears all the LEDs and sends a confirmation
message.

